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equation (II.11ab) coincide. Then, in the matrices H 
and M-( r s )  also the great terms 

( x p +  ÷ -1  ÷ ( X p q  - -  _ ypq) , y~..)-1, 
(A.2) 

( x ~ , , -  yL,,) -1, ( x ~ , , -  yp+q) -1 

are to be taken into consideration. Since these addi- 
tional large terms are outside the first row of the 
matrix M-( rs ) ,  a simple consideration shows that the 
coincidence of the poles in (A.1) does not change the 
value of the quotient det M - ( r s ) / d e t  H, (10). Another 
situation appears if (6) is satisfied for two (or more) 
different pairs of indices (rs), i.e. when as well as (6) 

0~-o(k) = 02b(k) + 27rj+ r/, 

( a b ) # ( r s ) ,  (3.3) 

also holds. In this case, additional large terms appear 
in the first rows of the matrices M-(rs )  and H and 
they change quotient (10). The conditions (6) and 

(A3) mean physically that either the Bragg reflection 
condition is satisfied for two wave vectors K~ and 
K~b or the incident wave is near the grazing reflection 
angle [see § 3(iii) of Litzman & Dub (1990)]. These 
cases were not considered in the present paper. 
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Abstract 

Probability relationships between structure factors 
from related structures have allowed previously only 
for either differences in atomic scattering factors 
(isomorphous replacement case) or differences in 
atomic positions (coordinate error case). In the coor- 
dinate error case, only errors drawn from a single 
probability distribution have been considered, in spite 
of the fact that errors vary widely through models of 
macromolecular structures. It is shown that the prob- 
ability relationships can be extended to cover more 
general cases. Either the atomic parameters or the 
reciprocal-space vectors may be chosen as the ran- 
dom variables to derive probability relationships. 
However, the relationships turn out to be very s imilar  
for either choice. The most intuitive is the expected 
electron-density formalism, which arises from con- 
sidering the atomic parameters as random variables. 
In this case, the centroid of the structure-factor 
distribution is the Fourier transform of the expected 
electron-density function, which is obtained by 
smearing each atom over its possible positions. The 
centroid estimate has a phase different from, and 
more accurate than, that obtained from the unweigh- 
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ted atoms. The assumption that there is a sufficient 
number of independent errors allows the application 
of the central limit theorem. This gives a one- (centric 
case) or two-dimensional (non-centric) Gaussian 
distribution about the centroid estimate. The general 
probability expression reduces to those derived 
previously when the appropriate simplifying assump- 
tions are made. The revised theory has implications 
for calculating more accurate phases and maps, 
optimizing molecular replacement models, refining 
structures, estimating coordinate errors and inter- 
preting refined B factors. 

1. Introduction 

A model of a crystal structure always has errors in 
any parameters used to describe the structure: atomic 
coordinates, atomic scattering factors, thermal 
motion parameters, or even cell dimensions. In addi- 
tion, the approximations of spherically symmetric 
atoms and of harmonic (or even isotropic) thermal 
motion will lead to small errors. In refining a struc- 
ture, we attempt to minimize these errors as far as 
possible, but it is best to keep their existence in mind 
and to be aware of their effects. 

© 1990 International Union of Crystallography 
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Errors in the model will lead to errors in the calcu- 
lated structure factors. In principle, if we know the 
probability of various errors in the model we can 
deduce the probability of various errors in the calcu- 
lated structure factor. Having an estimate of the prob- 
ability distribution of the true structure factor can be 
useful in a number of circumstances. The centroid 
estimate (probability-weighted average, or expected 
value) of the structure factor will minimize the root- 
mean-square (r.m.s.) error in both the structure factor 
and in electron-density maps computed from it (Blow 
& Crick, 1959). To combine phase information from 
several sources (Rossmann & Blow, 1961; Hendrick- 
son & Lattman, 1970), we need the probability distri- 
bution of the true phase. From the opposite point of 
view, we might hope to use the disagreement between 
the calculated and observed structure-factor ampli- 
tudes to draw inferences about the probability of 
errors in the model. 

In deriving probability relationships, I will be con- 
sidering the combination of differences in both atomic 
coordinates and scattering factors (§ 2). This is fairly 
general: differences in cell dimensions will show up 
as differences in fractional coordinates, and differen- 
ces in B factor (including errors from the assumption 
of harmonic isotropic thermal motion) or atom type 
will show up as differences in scattering factor. Only 
the effect of errors in the measurements of the struc- 
ture-factor amplitudes will be ignored. In this work, 
only the conditional distributions involving pairs of 
structure factors with the same hkl will be derived, 
not those involving higher orders such as triplets. The 
probability distributions will be shown to reduce to 
those derived previously, when the appropriate sim- 
plifying assumptions are made. 

The revised theory has a number of implications 
(explored in § 3) for the practice of macromolecular 
crystallography. Numerical tests supporting the gen- 
eral probability distributions and their physical inter- 
pretation will be presented in § 4. Finally, a brief 
overview of the most important results will be given 
in §5. 

2. Theory 

A model of the electron density in a crystal, often 
expressed as a set of atomic positions and thermal 
motion parameters, can be considered as one member 
of a related pair of structures. The model crystal has 
cell dimensions similar (within experimental error) 
to those of the true crystal, it belongs to the same 
space group, and it contains electron density that 
is, preferably, non-randomly related to the true 
electron density. Accordingly, probability relation- 
ships derived for atomic models also apply to isomor- 
phous derivatives. 

The strategy for obtaining structure-factor prob- 
ability distributions will be the following. I will 
assume that the conditions 0fthe central limit theorem 

Table 1. Definitions of  terms and notation 

= mean value of  x 
(x) = expected value, or probabili ty-weighted average, of  x 

N 

F =  ~ fj exp [21ris. ( r j + A r j ) ] ,  
j=l  
where s is the reciprocal-space vector [Isl =2(s in  0) /A],  the rj are 
atomic coordinates (in A) ,  and the Arj are positional difference 
vectors 

j=l  j=P+l 
= Zp + ZQ, where the P atoms constitute the partial structure and the 

Q atoms the missing structure 
= (IFI2/e), where e is a correction factor for the expected intensity in 

a reciprocal-lattice zone 
p 

Ft, = ~ fj exp (2~ris. rj) 
1 = i  

N 

G = E gl exp (27ris. rj) 
j = l  

= IGI exp (ia~) 
m = (cos (,~,~ - '~a)) 

= figure of  merit 

apply, in other words, that there is a sufficient number 
of independent finite contributions to the difference 
between two structure factors, none of them dominat- 
ing. The overall distribution of the difference, then, 
tends toward a Gaussian. The center of the Gaussian 
distribution is displaced by the sum of the expected 
values of the contributions to the difference. We need 
not be concerned with the form of the distribution 
for the individual contributions, only with their vari- 
ances. The variance of the Gaussian is the sum of the 
individual variances. This strategy will give a condi- 
tional probability distribution, but other distributions 
involving the two structure factors can be obtained 
from this. 

Consider a related pair of crystals ~ (with Fourier 
transform mate F) and @ (Fourier transform mate 
G). Without loss of generality, the crystals can be 
considered to have the same number of atoms, since 
extra atoms in one crystal can be considered to have 
a zero scattering factor in the other. The matched 
atoms in the two structures have, in general, different 
scattering factors and positions that differ by a shift 
vector. For reasons that will become clear below, it 
is necessary to consider scattering-factor and coordin- 
ate differences simultaneously. 

It will be most convenient to consider the Fourier 
transforms of the electron-density distributions for 
the two crystals, given in (1). (Unless otherwise 
specified, sums throughout are taken over all atoms 
in the unit cell. Some terms and notation are defined 
in Table 1.) 

G = ~ g~ exp (27ris. rj), ( l a )  
J 

F = Y~ fj exp [2¢ris. (rj + Arj)]. ( lb)  
J 

For generality, complex scattering factors f and g 
are assumed. F, G, f and g are all functions of 
the reciprocal-space vector s, but for clarity this 



902 STRUCTURE-FACTOR PROBABILITIES FOR RELATED STRUCTURES 

dependence is left implicit. The variables s and rj are 
used instead of the more familiar h and xj for two 
reasons: first, the coordinate errors Ar t will then be 
expressed in ~ngstrrm units; second, we will be inter- 
ested in the continuous Fourier transform of the 
probability distribution of At j, more appropriately 
expressed in terms of s than h. 

The centroid of the distribution of F given G will 
be defined in terms of a complex multiplier,. D, 

<r) = DG, (2) 

D(s)=(F/G) = ([~ ft exp (27ris. Arj) 

xexp  (2wis. r j ) ] / G > ,  (3a) 

o r  

D(s)=(FG*/GG*) =<{~j ~ fj exp (2.a'is. 

xexp [27ris. (rj-rk)]}/]G]2>. 

(3b) 

Equation (3b) is more convenient under some circum- 
stances, such as when there is a dependence between 
the parameters associated with two atoms. As shown 
explicitly here, D is in general a complex function of 
s. The dependence is made explicit because, under 
circumstances to be discussed below, D can be either 
real or complex, and a function of either s or just 
resolution. 

The variance of DG as an estimate of F is given in 
general form as 

<IF- DG[2) = <(F-  DG)[F* - (DG)*]). (4) 

Further development of (3) and (4) requires the 
assignment of the random variables and some 
specification of their underlying probability distribu- 
tions. Either reciprocal-space or real-space variables 
can be the random variables, depending on the 
circumstances. 

(a) Differences between atoms as random variables 
We can consider that fj and Ar t are the random 

variables. Such will be the case, for instance, when 
we have some a priori estimates of the probable errors 
in a molecular replacement model. The general 
expression for the variance is developed as follows: 

<IF-DGI=> = (~  ~] {t'j exp [2~is. (rj + Ar,)] 
\ j k  

- D g j  exp (27ris. rj)} 

x {fk* exp [--27ris. (rk + Ark)] 

--D*gk* exp (-27ris.  rk)}~). 
/ 

(5) 

The cross terms will tend to cancel for atoms that 
give independent contributions to the difference. 
However, the contributions of symmetry-related 
atoms are not independent, in fact are identical, for 
certain classes of reflections. The number of identical 
contributions arising from symmetry can be denoted 
by the expected intensity factor e (see, for example, 
Stewart & Karle, 1976). If the remaining cross terms 
arise from atoms giving independent contributions, 
(5) will simplify as follows: 

<IF- DG] 2) = e0. 2, (6a) 

where 

0.2 =y, (ifj exp [27ris. (rj + Arj)] 
J 

- Dgj exp (2zris. rj)l 2) 

=~,(Ifjexp(27ris. Art)-Dgj12). (6b) 
J 

Note that 0 .2 is in general a function of s. We will 
see below that, under certain conditions, it is a func- 
tion only of resolution. 

If there is a sufficient number of independent 
differences between ~ and ~ ,  the distribution of F 
will be a Gaussian with variance ecr~ about DG. In 
the non-centric case, the variance is distributed in the 
complex plane, giving rise to the following condi- 
tional probability distribution" 

1 (IF-DGI2~ 
pN[F; G] = we0.~exp e0.--~ ]"  (7) 

Various other probability distributions can be 
obtained from this by standard manipulations. 
Examples of such manipulations can be found in 
Srinivasan & Parthasarathy (1976). One example is 
the conditional distribution of the phase difference, 
which can be obtained by changing variables, fixing 
[F[ and renormalizing 

pN[Aot; [F[, [Gl]=exp [X cos (Aa)]/27rlo(X), (8a) 

where 

x = 21FI IDGI /e0 .L  (8b) 
For centric reflections, the variance is distributed 

only in the magnitude, and the following conditional 
probabilities are obtained: 

pc[F; G] = (27re0.2) -'/2 

x exp ( -  I F -  DGI2/Ze0.2a), (9) 

Pc[a~ ; IFI, IC;I] 
=exp[(X/2)cos(Aa)]/2cosh(X/2), (10) 

where X is as defined in (Sb). 
These expressions have the same mathematical 

form as those derived previously for structure-factor 
probabilities. With the appropriate approximations, 
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outlined below, these equations reduce to the earlier 
probability distributions. 

(i) Luzzati's distribution. Luzzati (1952) con- 
sidered the case in which fj =gj  for all atoms, and 
the Arj are drawn independently from a single prob- 
ability distribution, p(Ar). Under these circum- 
stances, p(Ar) is independent of all other parameters 
and (3a) can be rearranged to give 

D(s) = (exp (2zris. Ar)) 

xy~ gj exp (27ris. r j) /G 
J 

= (exp (27ris. Ar)) 

= ~ p(Ar) exp(2wis. Ar) dAr. (11) 
all 

space 

D is the Fourier transform of the probability distribu- 
tion of A r, as noted by Luzzati. In the formulation 
presented here, p(Ar) is not assumed to have any 
special symmetry so that D is in general complex. 

The variance is obtained from (6b) using the 
specified assumptions 

02 = Y~ (Igj exp (2¢ris. A r j ) -  Ogjl 2) 
J 

= (lexp (2 otis. a r j )  - DI 2) Y~ Igjl 2 
J 

-- (1-1DI 2) ~N. (12) 

Luzzati considered a particular case in which p (A r) 
is a three-dimensional isotropic Gaussian. The Four- 
ier transform of such a distribution is the real function 
of resolution given in (13)" 

O(Isl) = exp [ - (2  ¢r2/3)(I A rl2>lsl2]; ( 13a ) 

D(Isl) = exp  [ - (8~r2 /3 ) ( i a r l2 ) ( s in  0/A)2].  (13b) 

Note the correspondence to overall isotropic thermal 
motion, seen in most familiar form in (13b). The 
analogy to thermal motion will be explored below in 
the section on the expected electron-density function. 

In his Appendix 3, Luzzati (1952) expressed D in 
terms of 0 -2 , the mean-square displacement of the 
atom in the direction of the diffraction vector (or, 
since the distribution is spherically symmetric, in any 
direction). Luzzati's expression can be obtained from 
(13a) by the substitution ( lar l  2) = 3 0  -2. 

The correspondence to isotropic thermal motion 
has been obscured because D is usually expressed in 
terms of the mean absolute value of Ar rather than 
its mean-square value. For a spherically symmetric 
Gaussian distribution, ( IAr l )2- - (8 /3r r ) ( la r l~) .  With 
the substitution in (13a), Luzzati's (1952) equation 
(51) is obtained for D: 

D(Isl)  = exp  [-(~r3/4)(IArl)21slq.  (14) 

(ii) Individual distributions for each atom. Often we 
know more about the distributions of the differences 

between two structures. For instance, molecular 
replacement models will be very close to the true 
structure in highly conserved regions such as the 
active site of an enzyme, but will differ much more 
in surface loops with low amino acid sequence 
homology. 

The names of the atoms involved are irrelevant to 
the accuracy of the electron-density model. What 
matters is how close atom k in g6 is likely to be to 
the nearest atom j in 5. If this did not give a one-to- 
one matching (for instance, if one atom in the 
molecular replacement model were the nearest to 
several atoms in the true structure), we would have 
to consider (3b). However, we will assume for now 
that a one-for-one matching is possible. Then in 
principle we could reorder the atoms and set gj = 
(fj exp (27ris. Arj)) (Arj being the distance to the 
nearest atom) in (3a), so that D = 1, 

(F )=G=Y.  (f~exp(27ris. Arj))exp(27ris.rj). (15) 
J 

If the only uncertainties are assumed to be in the 
positions of the atoms, 

(F)=~djfjexp(27ris.rj), (16a) 
J 

where 

dj(s)= j" p(Arj) exp(2zris. Arj) dArj. (16b) 
all 

space 

If the errors are independent, (6b) becomes 

0-2 = y~ (Ifj exp (2~ris. Arj) 
J 

- ( f j  exp (2wis. Arj))l 2) 

= Y~ Ifj l2-  I(fj exp  (2~ris.  Arj))l 2 , (17) 
J 

and if the errors are only in the coordinates, 

~2 = y. ifjl2(1 -Idjl2). (18) 
J 

At this point it should be clear why it is necessary 
to consider the differences in scattering factor and in 
coordinates simultaneously. The difference between 
fj and gj could be considered an error, but, as just 
shown, the appropriate correlation between this 
'error' and the effect of coordinate error in fact 
reduces the deviation between F and G, improving 
the model of the electron density. One reason for 
allowing complex scattering factors is now also clear, 
as complex gj is necessary to allow for coordinate- 
error distributions that lack a center of symmetry. 

Complex scattering factors also allow scattering 
groups larger than single atoms. We have assumed 
that differences between the atomic coordinates are 
independent, but constraints of bonding and packing 
will lead to dependence among the parameters of 
neighboring atoms. However, the structure could then 
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be considered to be made up of an effectively smaller 
number of independent fragments. As long as this 
number is sufficiently large, the central limit theorem 
can still be invoked. 

(iii) The expected electron-density function. The 
results obtained so far in reciprocal-space terms have 
a more intuitive interpretation in real space. From 
Parseval's theorem, it follows straightforwardly that 
the expected value of a Fourier transform is the 
Fourier transform of the expected value, since the 
expected value of a quantity minimizes its r.m.s, error. 
This is just a generalization of the result of Blow & 
Crick (1959). They showed that the r.m.s, error in an 
electron-density map is minimized by using, in the 
Fourier transform, structure factors that minimize the 
r.m.s, error in the complex plane. Given the more 
general statement, we can easily reverse the question 
addressed by Blow & Crick to obtain the following: 
the expected value of a structure factor is the Fourier 
transform of the expected value of the electron 
density. 

Since the electron density is the sum of atomic 
densities, the expected density is the sum of the 
expected densities for each atom. For each atom, the 
expected density is the probability-weighted sum of 
its densities in all possible positions. In simple terms, 
the electron density for each atom is smeared out to 
represent the uncertainty in its position. More for- 
mally, the expected electron density of atom j is the 
convolution of its electron-density distribution with 
the probability distribution p(zarj). From the convo- 
lution theorem, this corresponds to multiplying the 
scattering factor by the Fourier transform of p(Arj), 
dj [defined in (16b)]. 

From (16 a) we see that the probability distribution 
of shift vectors plays the same role in the calculation 
of the expected structure factor as thermal motion 
plays in the calculation of conventional structure 
factors. In the expected electron density, atoms are 
smeared out over a range of possible positions; in 
real electron density, atoms are smeared out over a 
range of alternative positions. Because of this corre- 
spondence and the equivalence of the mathematics, 
we can take advantage of the extensive work that has 
been done on models of thermal motion. 

An intuitive picture of the form of (16) and (17) 
can be given. When the atoms are smeared over their 
distribution of possible positions in forming the 
expected electron density, their effective scattering 
power is reduced and some of the scattering power 
is thus missing from the model. This missing scattering 
power can be treated as being distributed randomly, 
so that F has a Wilson (1949) distribution centered 
on (F), the Fourier transform of the expected density. 
As with a standard Wilson distribution, a random 
distribution of scattering power through the entire 
unit cell is more restrictive than necessary. All that 

is required is that the fractional part of the dot product 
s.  r be distributed randomly over the range 0 to 1. 

A number of special cases of the expected density 
formalism are of interest in certain circumstances. 
We have already seen how Luzzati's (1952) distribu- 
tion arises, and a number of other cases will now be 
summarized briefly. 

Case of a perfect but incomplete model. This case 
can be treated by assigning the atoms to two classes. 
For the included atoms, or the 'P '  atoms, p(Ar) is a 
6 function at the origin (d r -- 1, the Fourier transform 
of a 6 function). For the missing atoms, or the 'Q '  
atoms, p(zar) is a uniform distribution (d r =0  in 
general, 1 for the reciprocal-lattice-origin term). 
Equations (16a) and (18) become 

(F)= Fp. (19a) 

t r ~ = ~  o. (19b) 

In this case, (7) reduces to the conditional probabil- 
ity derived by Sim (1959) and (9) to that derived by 
Woolfson (1956). Note that if the position of none 
of the atoms is known, P = 0 ,  so that (F )=0  and 
o'2 = ~N. Then (7) and (9) reduce to Wilson's distri- 
butions (Wilson, 1949). 

Case of uniform Gaussian errors, incomplete model. 
This has been treated by Srinivasan & Ramachandran 
(1965). For each of the P atoms, p(Ar) is the same 
finite Gaussian distribution, and D is given by (13a). 
The Q atoms, again, have uniform distributions, for 
which d~=0 in general. Equations (16a) and (18) 
become 

(F)= DFe. (20a) 

o '2=(  1 -  D2)"~P + ~'o. (20b) 

Case of individual Gaussian errors. Equations (16a) 
and (18) apply, the only modification being that dj is 
the following real function of resolution: 

dj(isl) = exp [-(2~r2/3)(Iza rjl2)lsl2]. (21) 

In practice, (F) is most easily computed by adding 
(8~r2/3)(Iz~rjl 2) to the B factors of the atoms in the 
model, @. 

In the previous two cases the centroid structure- 
factor estimate differed only by a scale factor from 
the structure factor calculated, without consider- 
ing errors, from the atoms in the model. Now the 
atoms most l~ikely to be in error contribute with the 
lowest weight to determining the centroid estimate 
and, hence, the phase. The relative weights vary with 
the resolution. Note that missing atoms can be 
handled by assigning infinitely broad Gaussian error 
distributions. 
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More complicated distributions. Just as with com- 
plicated thermal motion models, complicated error 
models could easily have too many parameters to be 
relevant, given the resolution of the available data. 
One can imagine anisotropic Gaussian distributions 
analogous to anisotropic thermal vibrations, but these 
might be useful only in special circumstances. For 
instance, models of proteins in crystals that exhibit 
anisotropic diffraction (Sheriff & Hendrickson, 1987) 
probably have anisotropic error distributions. 

Distance geometry methods (e.g. Havel & Wiith- 
rich, 1985) generate an ensemble of structures that 
satisfy distance restraints, for instance from two- 
dimensional NMR data. In this case, the expected 
electron density would be the ensemble average. 

Of more general interest is the question of the 
probability distribution for missing atoms. These 
atoms will be excluded from the volume occupied by 
the included atoms. Their expected density should 
therefore be distributed only through the unoccupied 
volume, not through the entire unit cell. In effect, this 
is already being done when models for the disordered 
solvent are varied to optimize the agreement with 
observed structure factors (Phillips, 1980). For loops 
that have not yet been fitted, bonding constraints 
could reduce the accessible volume further. The 
expected density could be the mean from a number 
of possible conformations generated, for instance, by 
systematic search (Moult & James, 1986). 

( b ) Reciprocal-space vector as random variable 

When, for example, a molecular replacement 
model is being constructed, there is conceptually 
an ensemble of possibilities for the true structure. 
However, the true structure is a particular choice from 
that ensemble and it becomes less appropriate to treat 
atomic parameters as random variables. But instead 
we can treat the reciprocal-space vector s for a set of 
structure factors as the random variable, averaging 
the effect of differences in atomic parameters over 
reciprocal space. 

I will only deal here with scattering factors for 
spherical atoms (real functions of resolution) and 
coordinate shifts that are equally frequent in all direc- 
tions. Then it is appropriate to average over a 
spherical shell in reciprocal space, starting with the 
definition of D in (3b). (An overall anisotropic distri- 
bution of coordinate differences could be dealt 
with by averaging over planes in reciprocal space 
orthogonal to the principal axes of the distribution.) 
D has the same value at s and -s ,  so it is real valued. 
Finally, since the same value of D is assumed to 
apply for each s in the shell, independent of IGI, the 
expected value of the ratio is the ratio of expected 
values. [The result in (22) can also be obtained by 
finding the value of D that minimizes ( IF-  OGI E) over 
a shell of reciprocal space.] 

D(Isl) - (FG*IIGI ~) 
= (FG*)/(IGI2> 

_ 1 
(IGI 2) ~ ~k f p(s)fjgk 

s h e l l  

x exp [2otis. (rj + Arj - rk)] ds. (22) 

Since all reciprocal-space vectors of magnitude Is I 
are equally probable, p(s) is spherically symmetric. 
The numerator, then, is a double sum of Fourier 
transforms of spherically symmetric functions. For 
such a function, the angular variables can be 
integrated out and the Fourier transform can be 
expressed in terms of the radial distribution function 
(James, 1948), in this case a one-dimensional 8 func- 
tion at Is[, 

co 

D(Isl) = ~  j~. ~k 8(Isl)fJgk 

0 

× sin (27rslrj + ar j  -rkl) ds 
2¢rslrj + Arj --rkl 

1 

J 

sin (27rlsl Irj + A r j -  rkl) 
× (23) 

2~lsl Irj + za rj - rkl 

When the argument of the sin ( x ) / x  function in 
(23) is greater than 7r (in other words, when the 
distance between atom j in ~ and atom k in @ is 
greater than half the resolution), the contributions to 
the double sum will oscillate from negative to positive. 
These contributions will tend to cancel, so we could 
neglect them. We can approximate further by con- 
sidering only terms j - - k  in the numerator and 
denominator. (If the v e c t o r s  rjq-Arj-rk and r j - r  k 
have similar radial distributions, errors from the 
approximation will tend to cancel.) 

D(Isl) = ~--'~fjgj s in (2cr l s l l za r j l ) /~  2 
J 2~lsllArjl / J g j .  ( 24 )  

Equation (24) can be used to demonstrate a result 
obtained by Luzzati (1952). With his assumptions, 
that fj = gj and that the shift vectors are drawn from 
a single spherically symmetric distribution, 

1 ~ sin (27rlsllzarjl) 
O ( I s l ) = ~  27rlsllArjl (25) 

Given that the frequency of occurrence of values I A rjl 
will reflect the radial probability distribution, D 
approximates to the Fourier transform of p(Ar). 
However, in most realistic cases, the size of the shifts 
will be correlated to the strength of scattering, so the 
assumptions leading to (25) will not be justified. 
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If the average is over a sufficient number of 
independent reflections, the central limit theorem can 
be invoked and the distribution of F about DG will 
tend toward a Gaussian. However, we must remember 
the expected intensity factor in (ra),  

o'~ = ( IV-  DCl21e). (26) 

Since D=<FC*/IGI2> [(3b)], 

o-~ = (IFI2/,~)- D2<ICI~/,~) 

=Y~f~-D:2g~ .  (27) 
J J 

Because of the symmetry between the reciprocal- 
space and real-space variables, the probability 
relationships are rather similar with either choice of 
random variable. 

(c) Relationships in terms of normalized structure 
factors 

Srinivasan & Ramachandran (1965) showed that 
the effects of missing atoms and coordinate errors are 
equivalent in terms of normalized structure factors. 
Since the probability relationships derived here have 
the same mathematical form, the effects of all the 
differences between two related structures will be 
equivalent. Another reason to consider normalized 
structure factors is that, even though D reflects the 
effects of coordinate errors, it also includes correc- 
tions for overall differences in scale factor and thermal 
motion. These will disappear with normalized struc- 
ture factors. Srinivasan & Ramachandran (1965) 
define a single parameter o" A that characterizes the 
probability distributions of normalized structure fac- 
tors. The parameter that plays the same role in the 
more general distributions will be termed o-~. Because 
s will be used as the random variable, I will only 
consider the case developed in the previous section. 
Therefore D is a real-valued function of Isl. 

First we define the normalized variables: 

EF = F/(IFI 2)'/2, 

Eo  = G/(IGI2) '/2 . 

Then, incorporating the results of (22), 

(E~) = DG/(IFI")'/2 

(Fc*)c 
- ( IFI  ~ ) , /~ ( Ic l  2) 

where 
= OrEEG, 

(FG*) 

o-~ ((ivl~)(icl~)),/~ 
(EFE*) 

((iE FI2)(IEGi2) ) 1/2 

~(EFE*) ,  

(28a) 

(28b) 

(29a) 

(29b) 

(IE,: - cr~ Ecl 2) = (lEvi 2) - o-~(IE~ I =) 
1 -o-~ .  (30) 

The approximate equalities of (29b) and (30) are 
exact if the normalization is carried out such that 
(IEI 2) = 1. 

3. Practical implications 

( a ) Refinement 

In the ideal case, refinement will minimize the 
differences between the observed and calculated 
structure factors in the complex plane. For various 
reasons (non-linearity of the refinement problem, 
geometrical restraints), atoms are not necessarily 
shifted to their correct positions by refinement. It is 
commonly seen that atomic B factors become inflated 
for atoms in the incorrect positions. The inflation of 
the B factors can be related numerically to the size 
of the coordinate error. This will be shown by deter- 
mining the scattering factor for each atom that would 
minimize the error, averaged over shells in reciprocal 
space. (Because of the averaging over shells, the 
imaginary terms disappear.) 

~ - - ( I ~ - G I 2 / , ~ )  

= z u,<s, t2-,,-s. (,.,< + a , . , < - r , -  a, ' , )  1 
\ k  t 

SO 

-2fkgt COS [27rs. (rk + Ark- r / ) ]  

+ gkgt COS [27rs. ( r k -  rt)]}),  

a~lagj = <~ 2gk COS [27rs. (rk--rj)] 

--2fk COS [27rs. (rk + Ark -- rj)]$ = 0, 
/ 

(31) 

gj = (fj cos (27rs. Arj)) 

( ~ j A  cos [27rs. (rk + A r k - r j ) ]  + 

- g k  cos [27rs. ( r k -  r j ) ])  

sin (2Iris[ Iarj]) 

=£ 2~rlsllarjl 

sin (2~rlsl Irk + A r k -  rjl) +Ef~ 
sin (2~lsl Ir~ -r~l) 

--gk 2~rlsllrk-rjl (32) 

The expected values in (32) were evaluated as in (23) 
above. The physical interpretation of (32) is that the 
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optimal scattering factor for an atom will allow it to 
account both for the density of the nearest atom and 
for the unaccounted density of neighboring atoms. 
Ignoring the terms k ~ j, (32) indicates that, averaging 
over a sphere in reciprocal space, an error Arj is best 
accounted for by smearing the atom over the surface 
of a sphere with radius IArjl. In terms of the expected 
density formalism, this corresponds to knowing the 
size, but not the direction, of the coordinate shift. 

The sin (x ) /x  function in the leading term of (32) 
can be modeled fairly well as isotropic thermal 
motion, as long as IArjl is small compared to the 
resolution (up to about IArjllsl--0.33), 

sin ( 2 ~ r l s l l a r j [ ) ( 2 ;  2 ) 
2~rlsllarjl ~ e x p - ~ l A r j [ 2 l s l  2 . (33) 

This means, for example, that the resolution-depen- 
dent effect of a 1 A error can be modeled as an 
increase of (87r2/3) ]k 2 in the B factor, up to about 
3 A resolution. The functions in (33) are compared 
in Fig. 1. 

Both the 'real' B factor and the 'error' B factor 
minimize the structure-factor error. They are inti- 
mately intertwined and one cannot hope to separate 
them entirely. Some workers, recognizing that B fac- 
tors are error sinks, avoid refining them until late in 
refinement. Because the expected electron-density 
model will give more accurate phases, this might not 
be the best approach. The potential for improvement 
in an electron-density map that comes from the 
increased phase accuracy will be demonstrated below. 

It is desirable to obtain an expected density model, 
since this gives the best estimate of the phases. One 
might question to what extent this occurs in least- 
squares refinement. The least-squares refinement of 
protein structures commonly minimizes the residual 
[w(IFI-IGI)2]. The assumption is that refinement of 
the difference between the amplitudes should mini- 
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Fig. 1. Comparison of the functions sin(2rrlsllzlrl)/2~rlsllzarl 
(thick line) and exp [-(2~'2/3)lar121sl 2) (thin line). 

mize the difference in the complex plane. As a number 
of authors (Wilson, 1976; Silva & Rossmann, 1985) 
have discussed, this corresponds to the assumption 
that there is no phase error. As phase errors increase, 
or as the model errors become larger relative to the 
resolution, this assumption becomes less tenable. A 
feature of the expected density model is that the 
scattering power is reduced, so that the mean value 
of the amplitudes is reduced. However, least-squares 
refinement is based on the assumption that IGI has a 
Gaussian distribution centered on IFI, so least squares 
will tend to inhibit the reduction of scattering power. 
In the most extreme case, a completely random 
model, the best estimate of F is 0; this clearly would 
not minimize the refinement residual. 

When the assumption of Gaussian errors breaks 
down in a minimization problem, it is advisable to 
go back to first principles and apply maximum-like- 
lihood methods, using more-accurate probability 
distributions, such as those derived here. [See, for 
example, the discussion of maximum likelihood by 
Mitra, Ahmed & Das Gupta (1985).] Such methods 
will be investigated in future work. 

( b ) Molecular replacement 

In molecular replacement methods (Rossmann, 
1972), the accuracy of the model is of great import- 
ance to success. As the expected electron density is 
more accurate than the unweighted density, it should 
be valuable in making molecular replacement struc- 
ture solutions more straightforward, especially in 
marginal cases. 

Molecular replacement models are commonly 
improved by editing out the portions expected to 
deviate most widely. This is a rather extreme and 
arbitrary action, which corresponds to assuming that 
the deleted atoms of the model bear no resemblance 
to any part of the new protein structure. Clearly, if 
reasonable estimates could be made for the probable 
errors, B-factor weighting would provide a much 
better model. Currently much effort is being expended 
in knowledge-based modeling of protein structures 
(e.g. Sutcliffe, Haneef, Carney & Blundell, 1987). 
Estimates of the reliability of the different parts of 
the resulting models would be extremely useful, and 
could be developed as a side product of the database 
investigations. Some information along these lines 
has already been obtained; the r.m.s, deviation of 
backbone atoms is a function of the degree of 
sequence homology (Chothia & Lesk, 1986; Hubbard 
& Blundell, 1987). 

Some proteins, such as immunoglobulin Fab frag- 
ments, have domains with variable hinge angles. In 
constructing an expected electron-density model, the 
uncertainty could be modeled by anisotropic distribu- 
tions, or by using the ensemble average from a number 
of possible hinge angles. Similar ideas have been 
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shown useful in practice. S. J. Remington (personal 
communication) has used the average density from 
several possible models for molecular replacement, 
obtaining better results than with any single model. 
Otwinowski et al. (1988) used isotropic B factors to 
model uncertainty for atoms in one domain of a 
molecular-replacement model. 

(c) Estimation of  coordinate error 

What is estimated as O'A by the method of Read 
(1986) is more correctly the parameter o-~ defined in 
this paper. It plays the same mathematical role as O'A, 
but has a different physical interpretation. Under 
certain assumptions, cr~ = O'A, and a plot of In (erA) 
VS IS[ z has a slope proportional to the mean-square 
coordinate error of the atoms included in the model 
(Read, 1986). These assumptions are rarely satisfied 
in real cases. Each assumption will be stated, and the 
effect of violating it will be examined. 

(1) In the expansion o f  (29b) to double sums over 
atoms, only the terms j = k are significant. Then, 

<£gj exp (27ris. Arj)) 

J (34a) 

where 

sin (2~rlsl Izlrjl) (34b) 
(f~gjexp(27ris. Arj))=fjgj 2~lsllArjl 

For errors that are small compared to the average 
distance between neighboring atoms, this is probably 
reasonable. But, for example, if an atom in the model 
were halfway between two atoms in the true structure, 
at least two terms of the double sum would be sig- 
nificant. One conclusion is that, for atoms in the 
tightly packed interior of a protein molecule, errors 
greater than the van der Waals radius do not have 
much meaning. 

(2) The scattering factor gj is either zero (missing 
atom) or differs from fj by an overall resolution-depen- 
dent scale factor. Consider a complete model with no 
coordinate errors but with errors in the individual B 
factors, o-E would reduce to the parameter a defined 
by Hauptman (1982) for the isomorphous replace- 
ment case. At higher resolution, the errors in scatter- 
ing factor would increase and trE would decrease, 
mimicking the effects of coordinate error. 

(3) The missing atoms are selected randomly, 
independent o f f j .  Consider a perfect partial model. 
If the missing atoms tend to have higher B factors 
than the included atoms, as would often be the case, 
the relative scattering power of the missing structure 
will decrease with resolution. Then tr~ will increase 
with resolution, giving an indicated negative mean- 
square error. By the same token, coordinate errors 
would be partially masked in a partial structure with 

errors. However, if only disordered solvent were miss- 
ing, it might be sufficient to ignore the low-resolution 
data to which the disordered solvent atoms con- 
tribute. This is relevant to the end of refinement, when 
only the least-well-ordered solvent is still missing 
from the model. 

(4) The coordinate errors are drawn independently 
from a single isotropic Gaussian distribution. The 
assumption that the distribution is Gaussian is less 
important than that it is isotropic. If all the other 
assumptions are satisfied, o-~ is the Fourier transform 
of p(Ar). In principle, then, p(zar) can be obtained 
by taking the Fourier transform of oE. I have already 
argued that it is not necessary that the errors for the 
atoms be independent,  as long as the structure can 
be considered to be made up of a sufficiently large 
number of fragments with independent errors. 

(5) For the atoms included in the model, there is no 
correlation between fjgj and Arj. This is one of the 
most questionable assumptions. To begin with, there 
is usually a correlation between B factors and errors. 
In a molecular replacement model, the largest errors 
are usually in surface regions, which have the highest 
B factors. Atoms with high thermal motion have 
poorly defined density and are difficult to fit or to 
refine accurately. 

Even if there were no correlation of f~g~ with co- 
ordinate error, a correlation would develop from 
refinement of the atomic B factors. To see the rele- 
vance of B-factor refinement, consider a structure 
that satisfies Luzzati's assumptions. Before any esti- 
mates of the individual coordinate errors are avail- 
able, oE reduces to the expression for D in (25), 
which approximates the Fourier transform of the 
error distribution. After B-factor refinement, the 
individual B factors will reflect the size of the coordin- 
ate errors, the increase in B (in the ideal case) being 
approximately equivalent to the sin ( x ) / x  term in 
(34). In effect, refinement takes atoms from a single 
error class and separates them into a large number 
of classes. Substituting gj~-fj sin (2~lsll,arjl)/ 
(2~rlsl [Arjl) into (34) gives the following: 

J J 

Before B-factor refinement, ~E is the average effect 
of all the coordinate errors. ]n contrast, after 
refinement o¥ is more like a r.m.s., not an average. 
It is no longer the Fourier transform of the coordinate- 
error distribution. Therefore, the Luzzati plot and the 
O" A plot will not necessarily give meaningful answers 
once the contributions of the atoms to the calculated 
structure factors have been weighted according to 
expected positional error. 
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The effect of inflated B factors will, however, be 
much less significant at the end of a refinement. For 
example, an error of 0.2 A corresponds to an increase 
of only about 1 A2 in the B factor. Another way to 
look at this is to consider that the sin (x) /x  terms in 
(35) will all be close to 1. For numbers close to 1, 
the mean and the r.m.s, are nearly equal. 

In principle, new methods to estimate coordinate 
error could be developed, starting from expressions 
such as (34). One difficulty would be that the combi- 
nations of error and scattering factor that give the 
variation of ere with resolution will not be unique. 
Some mathematical form would have to be assumed 
for the joint distribution p(fjg~, Arj). It could be 
assumed, for instance, that the dependence of error 
on scattering power is of the form derived by Cruick- 
shank (1949), which would only be reasonable near 
the end of refinement. Furthermore, it would have to 
be assumed that the individual B factors are increased 
by an amount related to the coordinate error. 

Further work will be required to resolve these ques- 
tions. In the meantime, one should be aware that 
tools such as the (7" 3 or Luzzati plots suffer from a 
number of systematic errors. They should be used for 
comparative, rather than absolute, measures of coor- 
dinate error. 

4. Numerical tests 

( a ) Structure-factor and phase accuracy 

The structure factor computed from the expected 
electron density should be a more-accurate estimate 
of the true structure factor than one computed without 
a consideration of errors. The test case will be a 
molecular replacement model. Such a case has been 
chosen both for its relevance and because it violates 
a number of the assumptions of previous work in this 
area. 

Bovine trypsin (BT; Chambers & Stroud, 1979) is 
about 33% identical in sequence to Streptomyces 
griseus trypsin (SGT), and was used as a molecular 
replacement model for the solution of that structure 
(Read & James, 1988). The two molecules are about 
the same size, but where the sequences are different 
there is no one-to-one correspondence between pairs 
of atoms. In determining the size of coordinate shifts 
(or 'errors') that relate atoms of the two structures, 
then, it is necessary first to decide with which SGT 
atom each BT atom should be paired. For the purpose 
of this test, each BT atom is paired with the SGT 
atom nearest to it in the overlapped structures. The 
distance is assigned as the error for that atom of BT 
as a model for SGT. This rule can result in several 
atoms of BT being paired with a single atom of SGT, 
but that occurs rarely and only in regions that are 
very different in the two structures. The individual 
error estimates obtained in this way are unrealistically 
precise, but serve to test the theory. A second, less 

precise, set of estimates is obtained by the following 
averaging procedure. For each residue, the error 
assigned for the main-chain atoms is the r.m.s, error 
in a five-residue window centered on that residue. 
Similarly, the error for the side-chain atoms is the 
r.m.s, value for the side chains in a five-residue 
window. 

Four sets of structure factors (G) were computed 
from the BT molecular replacement model for SGT: 
(1) unweighted; (2) weighted individually using (21) 
for d~ (B-factor weighting); (3) weighted individually 
using sin (x) /x  from the leading term of (32) for 
dj [sin (x) /x  weighting]; (4) weighted by the r.m.s. 
value in the five-residue window, using (21) for dj 
(smoothed B-factor weighting). Apart from the error 
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Fig. 2. (a) Improvement of phase accuracy of the BT model for 
SGT with weighting of the atomic contributions. The mean 
cosine of the phase difference is shown as a function of resol- 
ution. Circles correspond to the unweighted model, squares to 
the model with B-factor weighting, triangles to the model with 
smoothed B-factor weighting and diamonds to the model with 
sin (x)/x weighting. (b) Comparison of tr E values estimated as 
a function of resolution by the method of Read (1986), indicated 
by circles, or by (36), indicated by squares. 



910 STRUCTURE-FACTOR PROBABILITIES FOR RELATED STRUCTURES 

Table 2. Agreement measures for test data sets 

Intensity Mean 
Weighting R factor* R.m.s. (IFI-[GI) corre la t iont  cos (Aa)  

Unweighted 0.553 249,8 0.608 0-276 
Individual B 0,540 229.1 0-666 0-453 
Smoothed B 0-612 254.0 0-632 0-397 
sin (x)/x 0-539 227-5 0,672 0.469 

* R =E  Ilirl-lCll/E IFI. 

E (IFI 2 -IFI2)(IGI 2 -IGI 2) 
"l'r= 

[E (11~12-11~12)2 E (Icl 2- IGI2)2] ~/2" 

weighting, only an overall B factor of 17.3 A 2 w a s  

applied to the BT model. Refined B factors were used 
to compute F from the final SGT model. 

Fig. 2(a) shows that the phases obtained from any 
of the weighted models are much more accurate than 
those obtained from the unweighted model. As one 
might expect from Fig. 1, there is only a small 
improvement in going from B-factor weighting to 
s i n ( x ) / x  weighting. The results obtained using 
smoothed B-factor weighting show that an improve- 
ment in phase accuracy can be expected even when 
the information about the size of coordinate errors is 
imprecise. Table 2 gives some measures of overall 
structure-factor agreement for the four models. Note 
that the coefficient of correlation between IFI 2 and 
IGI 2 is a better indicator of phase accuracy than the 
more customary measures of agreement. 

In Fig. 2(b), one set of values of oE is estimated 
by the method of Read (1986), a method based on 
the probability distributions of (7) and (9). These are 
compared to the 'true' values, obtained by using 
means over resolution shells for the expected values 
in (29b). 

o-~ = E FG* IFI 2 E IGI 2 
shell s 11 shell 

(36) 

For this test, G is computed with B-factor weighting. 
The good agreement between the two sets of o'E values 
suggests that the distribution of F about (F) is con- 
sistent with (7) and (9). In addition, the mean figures 
of merit predicted for the four sets of structure factors 
agree equally well with the mean cosines of the phase 
differences in Fig. 2(b) (results not shown). 

( b ) Electron-density maps 

From the point of view of the practising crystal- 
lographer, what is most important is whether the 
improvement in phase accuracy leads to a noticeable 
improvement in the interpretability of electron 
density maps. Fig. 3 shows a comparison between 
two SGT maps, one phased by the unweighted BT 
model and the other phased by the BT model weighted 
with individual B factors. There is a marked improve- 
ment in the connectivity of the model, as well as a 
marked reduction in model bias. 

( c) Estimation of  coordinate error 

The data in Fig. 2 demonstrate that the estimation 
of o'r is reliable, and that the mathematical form of 
the probability expressions is reasonable. What this 
tells us is that the various sources of error in the 
calculated structure factor combine to give a Gaussian 
distribution. However, to hope to use the variation 
of ere with resolution for estimating coordinate error, 
we must understand the physical significance of o¥. 
This requires determining which approximations in 
the theory can be justified. 

Fig. 4 shows two plots of In (o-~) vs [s[ 2, for the 
unweighted and B-factor-weighted cases. If o-~ is 
interpreted as O'A, unreasonable estimates of r.m.s. 
coordinate error and model completeness (£,P/.Y,N) 
are obtained. The BT model has about the same 
number of atoms as SGT, and the r.m.s, distance to 
the nearest atom is 1.49,~. In both cases, the line 
that is predicted for an overall Gaussian error of 
1.49 A falls off much too steeply. The least-squares 
lines indicate, before B weighting, that the r.m.s, error 
is 0.61 J, and ~,P/~,lV = 0.34, and, after B weighting, 
that the r.m.s, error is 0.42/!l and 2 p / 2 N  = 0-50. (This 
illustrates the potential change in indicated coordi- 
nate error from the refinement of B factors.) For the 
unweighted data, the problem is mostly with the 
assumption of a Gaussian error distribution; the curve 
derived from the Fourier transform of the actual error 
distribution [o¥ = D in (25)] agrees fairly well with 
the higher-resolution data. However, only the curves 
derived from (34) agree well both before and after B 
weighting. In this test case, therefore, the effect of 
differences in scattering factor is small compared to 
the effect of coordinate error before, but not after, B 
weighting. 

The curves derived from (25) and (34) overestimate 
trE significantly at resolutions below 6/~ in this test. 
The assumptions must therefore be less valid at low 
resolution. There are a number of possibilities. More 
of the cross terms discarded from (29b) are significant 
at low resolution. The atoms with the largest errors, 
which contribute to cr~ primarily at low resolution, 
are on the surface of the protein; the distribution of 
atoms around them is far from spherically symmetric. 
(However, in a real crystal there would be at least 
poorly ordered solvent, not a vacuum.) Also, at lower 
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resolution it is more difficult to satisfy the requirement 
that the fractional part o f s .  r be randomly distributed 
over the range 0 to 1. Nonetheless, the agreement is 
reasonable for most of the data, even in this rather 
extreme test case. This shows that the assumptions 
leading to (34) are fairly robust. 

~ " <F'?'," 

o . 

• 2 . . . . .  4j 

/ 
(a) 

(b) 

Fig. 3. Comparison of two electron-density maps computed with 
coefficients ( 2 m [ F I - D I G I ) e x p ( i a  a )  (Read, 1986). In both 
maps, IFI is calculated from the final refined model of SGT, 
shown in solid lines. G is calculated from the BT molecular 
replacement model, shown in dashed lines, either with no weight- 
ing (a) or with individual B-factor weights (b). The contours 
are at 1.2 t i m e s  the  r.m.s, value of the map, 0.40 e A, -3 for (a) 
and 0.46 e/~-3 for (b). For clarity, only contours within !.7/~ 
of an atom in the figure are shown. 

5. Concluding remarks 

Most differences between two related crystals can be 
considered to .reside in either the coordinates of the 
atoms or in their scattering factors. The effect of these 
differences on the probability distributions of the 
structure factors has been derived using two choices 
of random variable. 

It is appropriate to consider the atomic parameters 
to be random variables when there is a priori  knowl- 
edge of the probability of differences between the 
structures. For instance, we know that molecular 
replacement models will be more reliable in some 
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Fig. 4. Comparison of(r E values [computed with (36)] with various 
theoretical curves, plotted as In ((rE) v s  Isl 2. The dotted line is 
predicted by the theor~ of Luzzati (1952) for an isotropic 
Gaussian error of 1.49A r.m.s., while the chain-dotted line is 
obtained by taking tre to be  the  Fourier transform of the actual 
distribution of coordinate differences (Luzzati, 1952). The 
dashed line gives the  l eas t - squares  fit to the points. Finally, the  
solid curve is computed using (34) for tre. The F and fj values 
are f r o m  the  final refined model of SGT. The G and gj values 
are f r o m  the  BT models, either with no weighting (a) or with 
individual B-factor weights (b). 
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regions than others. The centroid of the structure- 
factor probabi l i ty  distr ibution is obtained,  in this case, 
by taking the Fourier  t ransform of the expected elec- 
tron-density function. In other terms, each atom of a 
molecular  replacement  model  would be smeared over 
its distr ibution of possible positions. It is assumed 
that there is a sufficient number  of  independent  contri- 
butions to the difference in the structure factors, so 
that the central l imit theorem applies and the prob- 
ability distr ibut ion is a Gauss ian  about the centroid 
estimate. 

For a model  of  a crystal structure, it is preferable 
to consider the average effect of  a specific set of  errors 
on a set of  structure factors, in other words to consider  
the reciprocal-space vector as the random variable. 
The probabi l i ty  distr ibutions underlying the differen- 
ces between the model  and the true structure enter 
through the frequencies of the errors over all the 
atoms. Essentially the same probabil i ty distr ibutions 
of structure factors arise as in the previous case, 
because of  the symmetry between real and reciprocal 
space in the Fourier  transform. 

Considered in terms of  normalized structure fac- 
tors, all sources of  error have the same effect, which 
can be summarized  in a single parameter,  o¥. This 
parameter  plays the same role in the probabi l i ty  distri- 
butions as O" A in the distr ibutions of Srinivasan & 
Ramachand ran  (1965). Therefore, the methods sug- 
gested previously to estimate phase probabil i t ies  and 
to calculate electron-density maps (Read, 1986) are 
still valid. However, the interpretation of  the par- 
ameter ere is different. In particular,  the variat ion of 
o¥ with resolution cannot  be attributed entirely to 
coordinate error. Methods such as the Luzzati (1952) 
plot and the o'a plot (Read, 1986) to estimate coordi- 
nate error will therefore suffer from a number  of 
sources of  systematic error. 

It is a pleasure to acknowledge helpful  discussions 
with Marie E. Fraser and Trevor N. Hart. The author  

is an Alberta Heritage Foundat ion  for Medical  
Research Scholar. 
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Abstract  

Cubic  sublattices of cubic lattices are described which 
share only some of the point-symmetry operations 
with the original lattices; the common operat ions 

0108-7673/90/110912-04503.00 

form the point  groups 3m, 3, 4/m,  2 / m  or 1. Some 
properties of  these sublattices, including the centred 
ones, are shown and tentative terminology, notat ion 
and classification are introduced.  All the different 
types of incl ined primitive cubic sublattices L, for 
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